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Numerical results for the density and current correlation functions in dense 
hard-sphere fluids are obtained from a kinetic equation which is the extension of 
the linearized Enskog equation to finite wavelengths in order to demonstrate the 
convergence of the method of solution. Comparison is made to a previously 
proposed approximate solution. 
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1. INTRODUCTION 

The Enskog transport equation is an intuitive but successful extension of 
the Boltzmann equation for hard-sphere particles to moderate gas densi- 
ties. (l) Although it is widely used for the analysis of transport coeffi- 
cients, (2) it has been used only in a limited way as a complete description 
of space-time correlation functions. (3) In the various attempts to derive 
kinetic equations for dense gases valid at finite wavelengths and frequen- 
cies, a result similar to Enskog's has been obtained (4-1~ which, however, 
preserves certain short-time properties that are violated by the Enskog 
theory. This newer equation gives the same thermodynamic properties and 
transport coefficients as the Enskog equation; it will be called the general- 
ized Enskog equation in the sense that it more correctly incorporates 
fluctuation effects at finite wavelengths. 
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In the generalized Enskog equation, as in all kinetic equations charac- 
terized by a Boltzmann-type collision integral, collisional dynamics are 
treated explicitly only as uncorrelated binary collisions. While this approxi- 
mation becomes inaccurate at high densities, it is always exact at short 
times. Furthermore, the assumption of molecular chaos makes the kinetic 
equation amenable to analysis using methods that have been applied to the 
Boltzmann equation. Thus, the method of kinetic models which has been 
used to calculate time correlation functions for a low-density gas (11) can be 
directly applied to the generalized Enskog equation. (6~ Because the compu- 
tational efforts required to calculate time correlation functions using the 
full kinetic equation are considerable, a low-order kinetic model has been 
proposed.(12) This model is basically a relaxation-time approximation that 
treats the collision integral in terms of a few matrix elements for which 
analytical expressions have been obtained. The model, called QTRT, was 
intended to be a compromise between accuracy and computational simplic- 
ity. It has recently been discovered (13~ that this model fails to approach the 
hydrodynamic limit in the long-wavelength limit due to an improper choice 
of the sound damping constant. (14~ The corrected model, employed here, 
shall be referred to as QFRT. (15~ 

The purpose of this paper is to solve the generalized Enskog equation 
in order to obtain accurate space-time correlation functions. The recent 
availability of computer molecular dynamics data on density and current 
correlation functions for hard-sphere fluids at various densities (16) has 
made it important to have an accurate reference theory for comparison 
purposes. The main objective of this work is to demonstrate numerical 
convergence of the method of solution and to determine the accuracy of 
QFRT. Although the convergence of the expansion of the collision integral 
is independent of density, results at higher densities will be given in order to 
illustrate the relative importance of the collision term to the density- 
dependent streaming term. In the following the generalized Enskog equa- 
tion is formulated, the method of solution is outlined, the rate of conver- 
gence is demonstrated, and finally the results are discussed. 

2. THE GENERALIZED ENSKOG EQUATION 

The phase-space density correlation function, whose Fourier-Laplace 
transform in space and time is 

(;(k~Fs)= f d3r fo~ dteif"~-'t 

xN 
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obeys the kinetic equation 

(s i]-Cm/5 ) C (k~/5's) - ik'/srn nf~ f d3p" C (ky'fi's) 

= g(o)s[ e]  + C(k?FO) 
where 

and 

A(k) = C(k) - g(o)Co(k ) 

Co(k ) = 4~ro~il( ko) / k 

(2.2) 

(2.3) 

J[ C] = noZ f~.Ap<od~d3P [~'m A/SI 

• [ fo(?*) ~(?*?')  - f0(?) 6(pp') 

+ e - * ~ ~ % ( ? * ) ~ 5 ( ? * p ' )  - e i ~ ~ % ( ? ) 6 ( p p ' ) ]  (2.4) 

Here fo(fi) is the normalized Maxwellian distribution, g(a) the pair distribu- 
tion function at contact, C(k) the direct correlation function, j l  the first- 
order spherical Bessel function, A/5 =/5 -/5', and 

C(kpp'O) = f0(/5)(/5 - f i ' )  + f0(/5)f0(/5') [ S(k) - 1 ] (2.5) 

where S(k) is the static structure factor. In Eq. (2.4) the asterisk denotes 
postcollision momentum, and the dependence of C on k and s has been 
suppressed. 

Equation (2.2) was first derived in a study of kinetic equations valid at 
short times, (4) and the same result was later obtained in a number of 
different derivations. (5-1~ The term containing A(k), often called the 
mean-field term, is seen to be in the form of a contribution arising from a 
time-dependent self-consistent field, with - fl - lA(k) playing the role of an 
effective potential. The collision integral J[C], aside from the phase factor 
exp(_ ik. ~2o), is the one which appears in the linearized Boltzmann 
equation. Density effects are accounted for through the equilibrium correla- 
tions S(k) and g(o). 

Comparing Eq. (2.2) with the earlier Enskog equation one finds the 
two equations differ only in the expression for A(k). (1~ Instead of Eq. (2.3) 
the earlier Enskog equation gives 

C(O) Co(k/2) 
A(K) - C0(0 ) g(o)Co(k/2 ) (2.6) 

The difference appears to be due to two causes: To extend Enskog to finite 
k one would expect that all quantities such as C(0) should be replaced by 



204 Yip, Alley and Alder 

their corresponding k-dependent functions. In addition the relevant func- 
tions should be evaluated at the positions of the colliding particles rather 
than at the midpoint between them which leads to replacement of Co(k~2) 
by Co(k ). These differences are the reason that the second and third 
frequency sum rules for the density correlation function are given correctly 
by Eq. (2.2) but not by the Enskog equation. (3'4) Consequently, Eq. (2.2) is 
the correct description at short times and should be regarded as the proper 
extension of the linearized Enskog equation to finite k and w. The differ- 
ences in A(k) are important in the frequency-wave-number region relevant 
to neutron scattering experiments and computer molecular dynamics simu- 
lation. On the other hand, thermodynamic properties and transport coeffi- 
cients are not affected by A(k); therefore Eq. (2.2) gives the same results as 
the conventional Enskog theory. (8) 

The kinetic equation corresponding to Eq. (2.2) for the description of 
the van Hove self-correlation function Cs(kpfi's) is obtained by setting 
A(k) = 0, deleting the terms in Eq. (2.4) containing the phase factors 
exp(_ ik. f~o), and setting S(k)= 1 in Eq. (2.5). (6'8) The absence of the 
mean-field term follows mathematically from symmetry arguments, and 
physically from the fact that the equilibrium distribution of the particles 
surrounding the tagged particle produces no net force, (4) since it is spheri- 
cally symmetric. The resulting kinetic equation is thus identical to the 
Enskog equation for a tagged particle, and except for the factor of g(o) 
multiplying the collision integral, it is also identical to the Boltzmann 
equation for a tagged particle. 

3, KINETIC MODEL REPRESENTATION 

The space-time correlation functions explicitly evaluated are the num- 
ber density correlation F(k,t), the transverse current correlation J,(k,t), 
and the van Hove self-correlation Fs(k,t ). They are given by appropriate 
momentum integrals of d(kpp't) o r  G(kpp't). In terms of frequency 
transforms 

S(k, co) = 2 R e f  d]o d~ '  d(~pP's)l,=,~ +, 
(3.1) 

J,(k,,o) = 2Refd3pa '(a .p ) 

and 

Ss(k, ) = 2Ref  ds(kpp'S)ls=iw+e 

where a is a unit vector perpendicular to/~. 

(3.2) 
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For actual computations it is useful to cast Eq. (2.2) in the form of 
coupled equations involving only the momentum moments of C(kfifi's). 
This is accomplished by means of a kinetic model representation of the 
collision operator. (17) A set of basis functions {~,(p)}, a = 1 . . . . .  is 
introduced which is orthonormal with weight function fo(fi) and complete. 
In addition, it is required that 41(/5) = 1. Then Eq. (2.2) is rewritten as 

( s - ik  " fi ) C ( k/fifi's ) - f d 3p " ~2 ( k/fifi " ) ( ( kfi " p ' s  ) = C ( kfip' O (3.3) 

where E will be called the memory function. The memory function is then 
expanded and the following approximation is made: 

2(kfi?') = E r162 I B) 
a,fl  

N 

"~ E r162 a I fl) - v(k)  
a, fl 

• ~ ~P~(P)r (3.4) 
a = N + l  

where 

Y(~ I B) = f d3pd3p'r (3.S) 

and y(k) is a k-dependent quantity to be determined separately. The 
integral in Eq. (3.3) then becomes 

N 

f d3p" ~2(kpp") d(kp"ps) E E ~ -- -- t  t = cB. (e) .(e)fo(e)fo(e ) 
a,fl  It 

- ~,(k)C(kfip's) (3.6) 

where 

r o  B = + v(K)8~B 

In arriving at Eq. (3.6) use has been made of the expansion 

C(kpp' s) = E C.~ (ks)r (P')fo(P)fo(P') 
a,fl  

(3.7) 

with 

C~B (ks) = f d~v d ~ '  ~ (/5)ff B (p')  C(kp/Ts) 

(3.8) 

Combining Eq. (3.6) with Eq. (3.3) leads to an explicit kinetic equation 
for C(kfifi's) in terms of a finite matrix F ~ ;  a, fl < N, and a set of its 
momentum integrals C,~(k,s). To solve for the correlation functions the 

(3.9) 
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equation is multiplied by ~ ( /3 )~ (p ' )  after first dividing through by s -  
(ik . f i ) /m + ~,(k); integrating over /3 and p' then gives the set of N 
algebraic equations 

N 

d.~(ks)  - Y~roBD. .~dB.(ks)  = D,~ + D. ,8 . , [  S ( k )  - I ] (3.10) 
a,fl 

where 

D,, = f a'p s - (ilc . f i ) /m + y(k)  

To obtain the correlation functions one has to evaluate F~/~ and D~ 
and then invert an W • N matrix. The particular set of momentum func- 
tions chosen for ~(/3)" is based on the presence of the phase factors 
exp(+_ i/~. Re) in Eq. (2.4). These render the collision operator no longer 
spherically symmetric and, hence, the conventional Sonine polynominals 
are not the convenient basis functions. (6) Instead Hermite functions are 
chosen so that 

(l m n) -'/2 [ ] [ ] [ 

where Hl(x ) is the standard Hermite polynomial, and ~ = f i /m%.  Then 

Y,( a [ fl ) = nvokA( k )8ot6om6,,6ovSom,6O,, 

8ina2%g(o) . . . .  
+ f d3~d3~ ' d ~  e -(~-~') -~" (P. ~')H(P. ~') 

(2'a') 3 

-e-ik~~ - 2~' + 2P(P" ~'))] (3.13) 

with a representing the set of integers (l,m,n) and fl = (l',m',n'). The 
evaluation of the integral expressions is quite tedious. The general expres- 
sion has been reduced (~8) to a series of nested sums that can be evaluated 
on a computer. The results are given in the Appendix. Large blocks of 
Z(al B) have been generated for k = 0 as well as several other k values, 
which correspond to molecular dynamics data, and used to compute the 
density and current correlation functions. (16) In addition, blocks of Y,(alB) 
for ko = oo were evaluated and used to calculate the van Hove self- 
correlation function. (6) For certain a and fl corresponding to low-order 
integers (l ,m,n) analytic expressions of 2(alB) have been derived. (la) 
Using only such matrix elements, the QFRT approximation is derived. 
These results will be discussed in the next section. 
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4. CONVERGENCE OF KINETIC MODELS 

A kinetic model of order N is defined by Eq. (3.3) and Eq. (3.4), 
wherein a matrix Z(a]/3), with a, /3 ~< N, is used. The choice of ,/(k) also 
has to be specified. In the present calculations y ( k ) =  Z(N + l IN + 1). 
With Hermite functions as the basis set, the kinetic model order becomes 
the order of the polynomial ~(/5), i.e., N = l + m + n. The number of 
matrix elements in the square matrix Y.(a [/3) of order N for the first few N 
values are given in Table I. The minimal kinetic model (N = 2) is that 
which preserves the collisional invariants, particle number, momentum, and 
energy in the long-wavelength limit; it is the wave-number-dependent 
generalization of a single relaxation time approximation often called in 
kinetic theory the BGK or Krook model. The next-order model (N = 3) 
considers in addition states which are important for the description of the 
shear viscosity and thermal conductivity and roughly corresponds to the 
QFRT model. 

It is reasonable to expect that for sufficiently large N the kinetic model 
approximation will become independent of N so that the calculation can be 
said to be numerically converged. To demonstrate convergence in the 
calculation of the density correlation function one can follow the change in 
S(k, ~o) with the kinetic model order N at various values of the frequency, 
~0. Such plots are shown in Fig. 1 for a low-density gas. One sees that 
convergence is slowest at ~0 = 0, which corresponds to infinite time, where 
kinetic theory at higher densities is least accurate anyway. Even- and 

Table I. Root Mean Square Deviation/#v in S(k, ~o) and Ss(k, o~) 

N o .  of  ma t r i x  

N e lements  I a II b III  c IV a V e 

2 5 3,20 47.68 21.52 7.74 

3 8 2,54 4.65 5.14 

4 14 2.50 17.29 14.37 13.65 

5 20 3.07 18.21 5.70 7.83 

6 30 1.95 3.22 2.07 2.31 

7 40 2.79 1.90 1.39 1.54 

8 55 0 .80 0.55 1.48 0.38 

9 70 2.46 0.55 0.46 

10 91 

a S(k~) a t  V~ V o = 141 a n d  k a  = 0.082.  
b S(koo) a t  II/Vo = 3, k a  = 0.616. 

c S(k~o) a t  V / V  o = 1.6, ko = 0.759.  

aS(k~o) a t  V / V  o = 1.6, ko = 2.28. 

eSs(k~o ) a t y  = 1. 

2.97 

1.58 
1.05 
0.69 

0.47 

0.39 

0.28 

0.25 
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Fig. 1. Convergence for S(k, 03) for a hard-sphere gas in the low-density Boltzmann !imit at 
V/V o = 141 and ko = 0.08, where g(a) = 1 and S(k) = 1, as a function of model order, N. 
Values of S(k, oO are shown at several dimensionless frequencies ~ = o~,@/ko, where r-1 = 

4na2g(o)(~kB T/m)l/2 is the Enskog collision rate. Horizontal marks indicate values obtained 
from the linearized Boltzmann equation (Ref. 11). Normalization is such that the integral of S 
over all positive 03 gives ~rS(k). 

odd-order  results show very p ronounced  oscillations. The oscillatory behav- 
ior is greatly damped  as ~ increases and in the tail region of the spectrum, 
which corresponds to short time, there is little or no variation of S with N. 
Under  the particular low-density and long-wavelength conditions chosen, 
V / V  0 = 141, ko = 0.0802, the generalized Enskog equation should give the 
same results as the linearized Bol tzmann equation. The Bol tzmann equa- 
tion results using Sonine polynomials as basis functions (11) are also given in 
Fig. 1. Agreement  with model  N = 10 is seen to be quite close, the 
max imum deviation being 1.5%. Since the convergence of the expansion is 
independent  of density, because the collision integral is independent  of 
density, the behavior  observed in Fig. 2 also holds at other densities and 
wave numbers  as Fig. 3 shows. The N dependence of the spectra themselves 
is shown in Figs. 4 and 5. The unexpectedly large deviation at N = 5 
implies that  convergence of the intermediate-order kinetic model  cannot  be 
taken for granted. However,  there is little variation of S(k, ~) with N for 
N >/ 8 and in most  cases N = 7 gives sufficiently precise results. Also 
indicated in Figs. 2 -3  are the results of Q F R T  at the appropriate  value of 
N. Figure 6 is included to show that Q F R T  still does not  agree accurately 
with hydrodynamics  at low k and high density because of inaccuracies in 
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N 

Fig. 2. Same as Fig. 1 except V~ V 0 = 3.0, ko = 0.616 at which S(k) = 0.149. Horizontal  lines 
drawn at the appropriate order indicate the Q F R T  results. 

the evaluation of the sound speed. However, the order 5 model is seen to 
lead to satisfactory results for the Brillouin peak. 

Corresponding results for the van Hove self-correlation function are 
shown in Fig. 7 at a dimensionless wavelength to mean-free path ratio 
y = 4v~ Vo/Vko = 1. In the case of Ss(k,o~ ) convergence is achieved at 
lower N relative to S(k, o~). 

1.5 

1.0 

• 
co 

0.5 

I I I ' l '  

0.046 

0.091 

0.370 

2 4 6 8 

N 

Fig. 3. Same as Fig. 2 except V~ V o = 1.6, ka  = 0.759 at which S(k) = 0.0271. 
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Fig. 4. The initially normalized dynamic structure factor S(k, o~) of a hard-sphere fluid at V/V 0 = 3.0 and ko = 0.616. Compar ison  of N = 10 (solid curve), N = 7 (triangles), N = 5 
(solid circles), and N = 3 (open circles). 

A way to estimate the overall convergence is to evaluate the root- 
mean-square deviation/~N, 

/~ = Ai (4 .1)  
i =  

where Nf is the number of frequency points at which the deviation, A N, is 
calculated, and 

[ CNm.x(k,~j)- CN(k'6~ ] 
AJV = C----~,~(k,-~jj) • 100 (4.2) 

In Eq. (4.2) subscript N m a  x denotes the highest-order kinetic model consid- 
ered and C N is the value given by the kinetic model of order N. For most 
cases Nr, ax = 10. The frequency points sampled in Eq. (4.1) always include 
the zero-frequency value (w = 0) and at least five other equally spaced 
frequencies covering the region where the correlation function has a signifi- 
cant value. The results for the density and self-correlation functions shown 
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Fig. 5. Same as Fig. 4 except  the funct ion is the t ransverse  cur rent  correlat ion.  The  N = 7 

results  are not  ind ica ted  because  they closely cor respond to the results for N = 10. 
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Fig. 6. The  Bri l louin sound  peak  of S(k, r in the h y d r o d y n a m i c  l imit  (ko = 0.025) at  a ' 

dens i ty  co r respond ing  to V~ V 0 = 3.0. The  solid line is the h y d r o d y n a m i c s  result  using Enskog  
t ranspor t  coefficients.  The  solid circles cor respond  to Q F R T  results and  the open circles are 
the results  of o rder  N = 5. 
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Fig. 7. Convergence for S,(k,o~) for a hard-sphere gas at a density such that f ~ l  

= k ~ / m  for different values of the dimensionless frequency x = ~o~ E. 

in Figs. 1-4 and Fig. 6 are given in Table I. The results of Table I again 
indicate that convergence of the kinetic model calculations of S(k, o~) can 
be rather slow. Generally speaking, the N = 10 model results should be 
accurate to about 1% or better while intermediate-order models, N = 4 and 
5, can give larger/~N than the low-order models, N = 3. 

In the case of self-diffusion the generalized Enskog equation is identi- 
cal to the linearized Enskog equation (6'8) and the van Hove self-correlation 
function has a spectral distribution Ss(k, o~) that is completely governed by 

a single parameter, y = 4 2~g (a)Vo/Vka. It is sufficient to characterize the 
monotonic behavior of Ss(k,~o ) by its peak height and width at half- 
maximum as an universal function of y. The results obtained from kinetic 
model N = 8 are shown in Fig. 8. It is evident that at low density or long 
wavelength, that is for y >/2, the self-correlation function is well described 
by the diffusion model, S,(k,o~)= DkZ/[tg2+ (Dk2)2]. When the long- 
wavelength approximation breaks down, the diffusion model overestimates 
the width and correspondingly underestimates the peak height. Sensitivity 
of S, to different kinetic model order is not pronounced; the largest 
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Fig. 8. Half-width (AI.01/2 = k2D) divided by k(2kBT/m) 1/2 of the van Hove self-correlation 
function Ss(k , ~o) for a hard-sphere fluid as a function o fy  = 4na2g(a)/k: N = 8 results (solid 
curve) and previous calculations (Ref. 6) using a model of the same order (open circles). Also 
shown is the diffusion approximation using A0~l/2 = k2DE, where D E is the Enskog diffusion 
coefficient (dashed curve, marked DE) and the limiting value of 0.832 for a free-particle 
system (cross). 

difference in the width between a single relaxation time calculation and the 
N = 10 model results is about 5% n e a r y  = 1. 

5. D I S C U S S I O N  

The generalized Enskog equation entails two significant improvements 
over the linearized Boltzmann equation in dense gases at finite wavelength: 
the first improvement  is the self-consistent field interaction and the second 
is the nonlocal effect in the collision operator. The self-consistent field, 
A(k), generally consists of the static contribution [cf. Eq. (2.3)] as expressed 
by the direct correlation function C(k). Only in the case of hard spheres 
can the second contribution, which expresses the nonlocal effect through 
g(o), be separated from the collision integral, J [C] .  This is because the 
collisions are instantaneous. For systems with continuous potentials, the 
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coll is ional  pa r t  is f requency dependen t  and  the app rop r i a t e  kinet ic  equa t ion  
has not  ye t  been  formula ted .  

Whi l e  detai ls  of the coll ision dynamics  in J [ C ]  m a y  not  have large 
quant i ta t ive  effects, bo th  the self-consistent  field and  the nonloca l  effects 
have  s t rong influences on the densi ty  corre la t ion funct ion.  This is illus- 
t ra ted  in Fig. 9 which shows S(k,~o) as ca lcu la ted  f rom Q F R T  for a 
modera t e ly  low-densi ty  gas at  V / V  0 = 10 and  ko = 0.412, a condi t ion  that  
is close to the h y d r o d y n a m i c  regime. Spect rum A denotes  the Bol tzmann  

~3 

tj') 

0,6 

0.4 

0.2 

0 L 
0 

I t I 

RT 

1 2 3 

Fig. 9. Dynamic structure factor S(k,~o) of a hard-sphere fluid at V~ V o = 10 and ko = 
0.412: QFRT results, compared to a calculation with k set equal to zero in all 51(a ] fl) except 
51(2 [ 1) (curve B), and a calculation where in addition Y~(21 1) is set equal to zero (curve A)~ 
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equation result which is obtained by ignoring both A(k) and the phase 
factors exp(+ik  .~o).  In this case one has well-established central 
(Rayleigh) and propagating (Brillouin) components. Spectrum B, obtained 
when only the phase factors are ignored, shows the effects of the self- 
consistent field, namely, strong dispersion in the propagation speed and 
dramatic changes in the relative intensities of the central and Brillouin 
peaks. This behavior has been observed previously. (3) When nonlocal 
effects are included, further changes occur, as shown by the QFRT spec- 
trum. 

APPENDIX 

This appendix gives an explicit expression for the matrix elements 
Z(c~l fi ) in terms of nested sums. (18) First rewrite Z(a[f i )  as 

E ( ol [ fl ) = nvok A ( k )aol6om 6 , ,, •ovaom,aO, ,, 

8ino2vog( o) 
+ (2~ . )3  ( lmnlY ' l l 'm 'n ' )  

Then 

i 
( lmnlZll '  m'  n ' )  = 

m fi 

~ f i ( l , l " , l ' ) f l ( m , m " , m ' ) f i ( n , n " , n ' )  
l " = 0  m " = O  n " = O  

X ( l -  l " , m  - m " , n  - n " l ~ . ( k o ) l l ' -  l% 

m' " ' ) - m ,n - n" 

where i = min(l, l'), etc., 

and 

f~ l! n! 
f i ( l , m , n ) -  2 ̀ +n-m m ! ( l -  m ) ! ( n -  m)! 

(tmnlM(k~ 

The elements M~ are 
1 

( l m n l M , I I ' m ' n ' )  = ~,, 

= (lmnlMl(O)ll'm'n') 

+ ( -  l f + m ' + n ' ( l m n l M , ( k o ) l l ' m ' n  ')  

[ '  m ~ n t 

i=O m=o  n = o  i ,=O m'=o  ~ '=0 

• r(z', i')v (m', w)(im< Md 
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where 

2 l -  1 

F(x) is the Euler gamma function, and 

l! 

The elements M 2 are 

(ImnlM21l'm'n') 
l' m' n' 

( l ' ) ( m ' ) ( n ' )  
= 2 2 ~,  l" ( -2 ) r '+m"+ '"  l " = 0  m " = 0  n " = 0  m" l*l t' ml"'m"'n" 

•  l ' -  l" ,m + m' - m",n + n' - n"lM3[l",m",n" ) 

where 2x l .... = 80fiOmSO, -- 1. 
The elements M 3 are 

l+m+n [ 
( lmnlM3l l 'm 'n ' )=qr3 /2( -~)  (i)l'+m'+n' s k k 

l"=O m"=O n"=O 

• r(l, l")r(m, m")3,(n, n") 

• (1/2)V'+m"+""(l"m"n"lM41l'm'n ') 

Finally the elements M 4 are 

(lmnlM4[l'm' n') = W(I~. + 1,IT)F(I + l ' ,m + m',n + n') 

where l r = I + m + n, 

~ [ l - - ( - - 1 ) m - ' ? 2 m - l - l ~ ( ~ ) ,  m > 

F(l ,m,n) = ( - i )n[1  + ( - l ) t ? [ 1  + ( - 1 ) m ] F (  I ~ ) F ( + I  m 2_.__~1 ) 

• 2(l+m)/2G~l+~)/2(ko ) 

d" Jmx(___X) 

and jm(X ) is a spherical Bessel function. (19) Even though imaginary num- 
bers occur in the definitions of W and F, the matrix element M 4 is always 
real. 
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